Lecture 37: ConvNets (Cont'd) and Training

CS 4670/5670

Sean Bell

(Unrelated) Dog vs Food

[Karen Zack, @teenybiscuit]

(Unrelated) Dog vs Food

[Karen Zack, @teenybiscuit]

(Unrelated) Dog vs Food

[Karen Zack, @teenybiscuit]

(Recap) Backprop

From Geoff Hinton's seminar at Stanford yesterday

How to learn many layers of features (~1985)

Back-propagate error signal to get derivatives for learning

(Recap) Backprop

Parameters: $\quad \theta=\left[\begin{array}{lll}\theta_{1} & \theta_{2} & \cdots\end{array}\right]$
All of the weights and biases in the network, stacked together

Gradient: $\quad \frac{\partial L}{\partial \theta}=\left[\begin{array}{lll}\frac{\partial L}{\partial \theta_{1}} & \frac{\partial L}{\partial \theta_{2}} & \cdots\end{array}\right]$
Intuition: "How fast would the error change if I change myself by a little bit"

(Recap) Backprop

Forward Propagation: compute the activations and loss

Backward Propagation: compute the gradient ("error signal")

(Recap)

A ConvNet is a sequence of convolutional layers, interspersed with activation functions (and possibly other layer types)

(Recap)

Convolution Layer

(Recap)

Convolution Layer

$32 \times 32 \times 3$ image

$5 \times 5 \times 3$ filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

(Recap)

Convolution Layer

Filters always extend the full depth of the input volume
$32 \times 32 \times 3$ image

$5 \times 5 \times 3$ filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

(Recap)

Convolution Layer

(Recap)

Convolution Layer

(Recap)

Convolution Layer

consider a second, green filter

(Recap)

For example, if we had 65×5 filters, we'll get 6 separate activation maps: activation maps

We stack these up to get a "new image" of size $28 \times 28 \times 6$!

Web demo 1: Convolution

http://cs231n.github.io/convolutional-networks/
[Karpathy 2016]

Web demo 2: ConvNet in a Browser

http://cs.stanford.edu/people/karpathy/convnetjs/demo/ mnist.html

[Karpathy 2014]

Convolution: Stride

During convolution, the weights "slide" along the input to generate each output

Weights

Output

Input

Convolution: Stride

During convolution, the weights "slide" along the input to generate each output

Input

Output

Convolution: Stride

During convolution, the weights "slide" along the input to generate each output

Input

Output

Convolution: Stride

During convolution, the weights "slide" along the input to generate each output

Input

Output

Convolution: Stride

During convolution, the weights "slide" along the input to generate each output

Input

Output

Convolution: Stride

During convolution, the weights "slide" along the input to generate each output

Input

Output

Convolution: Stride

During convolution, the weights "slide" along the input to generate each output

Input

Recall that at each position, we are doing a 3D sum:

$$
h^{r}=\sum_{i j k} x_{i j k}^{r} W_{i j k}+b
$$

(channel, row, column)

Convolution: Stride

But we can also convolve with a stride, e.g. stride $=2$

Input

Output

Convolution: Stride

But we can also convolve with a stride, e.g. stride $=2$

Input

Output

Convolution: Stride

But we can also convolve with a stride, e.g. stride $=2$

Input

Output

Convolution: Stride

But we can also convolve with a stride, e.g. stride $=2$

Input

Output

- Notice that with certain strides, we may not be able to cover all of the input
- The output is also half the size of the input

Convolution: Padding

We can also pad the input with zeros. Here, pad =1, stride = $\mathbf{2}$

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Output

Convolution: Padding

We can also pad the input with zeros. Here, pad =1, stride = $\mathbf{2}$

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Output

Convolution: Padding

We can also pad the input with zeros. Here, pad =1, stride = $\mathbf{2}$

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Output

Convolution: Padding

We can also pad the input with zeros. Here, pad =1, stride = $\mathbf{2}$

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Output

Convolution: How big is the output?

In general, the output has size:

$$
w_{\text {out }}=\left\lfloor\frac{w_{\text {in }}+2 p-k}{s}\right\rfloor+1
$$

Convolution: How big is the output?

stride s

0	0	0	0	0	0	0	0	0
0								0
0		kernel	k				0	
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0
width $w_{\text {in }}$								
\qquad								
\longleftrightarrow								

Example: $\mathrm{k}=3, \mathrm{~s}=1, \mathrm{p}=1$

$$
\begin{aligned}
w_{\text {out }} & =\left\lfloor\frac{w_{\text {in }}+2 p-k}{s}\right\rfloor+1 \\
& =\left\lfloor\frac{w_{\mathrm{in}}+2-3}{1}\right\rfloor+1 \\
& =w_{\mathrm{in}}
\end{aligned}
$$

VGGNet [Simonyan 2014] uses filters of this shape

Pooling

For most ConvNets, convolution is often followed by pooling:

- Creates a smaller representation while retaining the most important information
- The "max" operation is the most common
- Why might "avg" be a poor choice?

32

downsampling

32

Pooling

- makes the representations smaller and more manageable
- operates over each activation map independently:

Max Pooling

Single depth slice

What's the backprop rule for max pooling?

- In the forward pass, store the index that took the max
- The backprop gradient is the input gradient at that index

Example ConvNet

CONV CONV POOL
$\downarrow \underset{\downarrow}{\text { ReLU }} \downarrow \stackrel{\text { ReLU }}{\downarrow} \downarrow$

Figure: Andrej Karpathy

Example ConvNet

CONV CONV POOLCONV CONV POOLCONV CONV POOL $\downarrow \begin{gathered}\text { ReLU } \\ \downarrow \\ \downarrow \\ \downarrow\end{gathered}$ ReLU $\downarrow \downarrow \underset{\downarrow}{\text { ReLU }} \downarrow \underset{\downarrow}{\text { ReLU }} \downarrow \downarrow \downarrow \begin{gathered}\text { ReLU } \\ \downarrow \\ \downarrow\end{gathered} \underset{\downarrow}{\text { ReLU }} \downarrow$

Figure: Andrej Karpathy

Example ConvNet

CONV CONV POOLCONV CONV POOLCONV CONV POOL FC

 $\stackrel{\text { ReLU }}{\downarrow} \downarrow \stackrel{\text { ReLU }}{\downarrow} \downarrow \downarrow \begin{gathered}\text { ReLU } \\ \downarrow \\ \downarrow\end{gathered} \stackrel{\text { ReLU }}{\downarrow} \downarrow \downarrow \downarrow \underset{\downarrow}{\text { ReLU }} \downarrow \stackrel{\text { ReLU }}{\downarrow} \downarrow \stackrel{\text { (Fully-connected) }}{\downarrow}$

Example ConvNet

CONV CONV POOLCONV CONV POOLCONV CONV POOL FC

$10 \times 3 \times 3$ conv filters, stride 1, pad 1
2×2 pool filters, stride 2

Example: AlexNet [Krizhevsky 2012]

Extract high level features
Classify each sample
"max": max pooling
"norm": local response normalization
"full": fully connected
Figure: [Karnowski 2015] (with corrections)

Example: AlexNet [Krizhevsky 2012]

Questions?

How do you actually train these things?

How do you actually train these things?

Roughly speaking:

Gather
labeled data

Find a ConvNet architecture

Minimize the loss

Training a convolutional neural network

- Split and preprocess your data
- Choose your network architecture
- Initialize the weights
- Find a learning rate and regularization strength
- Minimize the loss and monitor progress
- Fiddle with knobs

Mini-batch Gradient Descent

Loop:

1. Sample a batch of training data (~ 100 images)
2. Forwards pass: compute loss (avg. over batch)
3. Backwards pass: compute gradient
4. Update all parameters

Note: usually called "stochastic gradient descent" even though SGD has a batch size of 1

Regularization

Regularization reduces overfitting:

$$
L=L_{\mathrm{data}}+L_{\mathrm{reg}} \quad L_{\mathrm{reg}}=\lambda \frac{1}{2}\|W\|_{2}^{2}
$$

$$
\lambda=0.1
$$

[Andrej Karpathy http://cs.stanford.edu/people/karpathy/convnetis/demo/classify2d.html]

Overfitting

Overfitting: modeling noise in the training set instead of the "true" underlying relationship

Underfitting: insufficiently modeling the relationship in the training set

General rule: models that are "bigger" or have more capacity are more likely to overfit

(0) Dataset split

Split your data into "train", "validation", and "test":

Dataset

Validation

Train
Test

(0) Dataset split

Validation

Train

Test

Train: gradient descent and fine-tuning of parameters

Validation: determining hyper-parameters (learning rate, regularization strength, etc) and picking an architecture

Test: estimate real-world performance (e.g. accuracy $=$ fraction correctly classified)

(0) Dataset split

Validation

Train

Test

Be careful with false discovery:

To avoid false discovery, once we have used a test set once, we should not use it again (but nobody follows this rule, since it's expensive to collect datasets)

Instead, try and avoid looking at the test score until the end

(0) Dataset split

Cross-validation: cycle which data is used as validation

Average scores across validation splits

(1) Data preprocessing

Preprocess the data so that learning is better conditioned:

X /= np.std(axis=0, keepdims=True)

Figure: Andrej Karpathy

(1) Data preprocessing

In practice, you may also see PCA and Whitening of the data:
original data

decorrelated data

whitened data

(covariance matrix is the identity matrix)

(1) Data preprocessing

For ConvNets, typically only the mean is subtracted.

An input image (256x256)

A per-channel mean also works (one value per R,G,B).
Figure: Alex Krizhevsky

(1) Data preprocessing

Augment the data - extract random crops from the input, with slightly jittered offsets. Without this, typical ConvNets (e.g. [Krizhevsky 2012]) overfit the data.

E.g. 224×224 patches
extracted from 256×256 images

Randomly reflect horizontally
Perform the augmentation live during training

